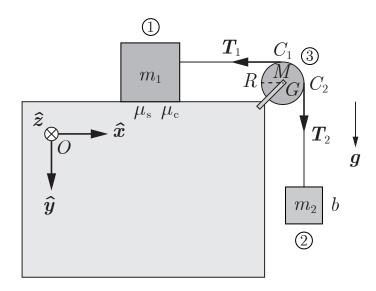


1. Système avec frottement (6.5/20 points)

Nom:												
1,0111	_		_						\mathbf{N}° Sciper:			
Prénom:									•			



Un bloc \bigcirc 1, considéré comme un point matériel de masse m_1 , est posé sur un plan horizontal et attaché à un fil inextensible de masse négligeable qui passe au-dessus d'une poulie \bigcirc 3 de masse M et de rayon R. Un bloc \bigcirc 2, considéré comme un point matériel de masse m_2 , est suspendu à l'autre extrémité du fil. Le frottement sec entre le bloc \bigcirc 1 et le plan horizontal est caractérisé par un coefficient de frottement statique μ_s et un coefficient de frottement cinétique μ_c . Le frottement visqueux entre le bloc \bigcirc 2 et l'air est caractérisé par la force de frottement $F_{f,2} = -b v_2$ où v_2 est la vitesse du bloc \bigcirc 2 et le coefficient b>0. Le mouvement de rotation propre de la poulie \bigcirc 3 est caractérisé par le moment d'inertie λMR^2 , où $1/2 \le \lambda \le 1$, par rapport à l'axe de rotation horizontal qui passe par son centre de masse G.

Le fil se déplace avec le mouvement de rotation propre de la poulie 3 sans glisser. Ce mouvement est caractérisé par les tensions $T_1 = -T_1 \hat{x}$ et $T_2 = T_2 \hat{y}$ exercées par le fil sur la poulie 3 aux points de contact C_1 et C_2 respectivement. Pour décrire la dynamique du système, on choisit un repère cartésien $(O, \hat{x}, \hat{y}, \hat{z})$ où le vecteur unitaire \hat{x} est orienté le long de l'axe horizontal vers la droite, le vecteur unitaire \hat{y} est orienté le long de l'axe vertical vers le bas et le vecteur unitaire \hat{z} entre dans le plan vertical ci-dessus.

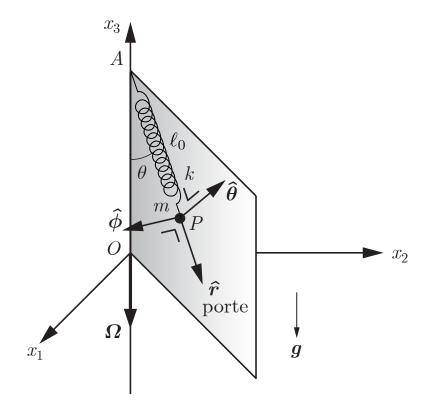
Les réponses doivent être exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées cartésiennes x, y, z et z et de leurs dérivées temporelles, des vecteurs de base \hat{x} , \hat{y} et \hat{z} , de la norme du champ gravitationnel g et des grandeurs scalaires spécifiées dans l'énoncé de chaque question.

Questions et réponses au verso!

1.	(1.5 points) Determiner les equations scalaires du mouvement de chaque bloc en utilisant la loi d'action-réaction entre les blocs et la poulie.
2.	(1.0 point) Déterminer la différence T_2-T_1 entre les normes des tensions T_1 et T_2 en termes de l'accélération angulaire scalaire de la poulie $\ddot{\psi}$ où l'angle de rotation propre ψ est défini positif pour une rotation de la poulie dans le sens des aiguilles d'une montre.
	$T_2 - T_1 = \dots$
3.	$(0.5\ \mathbf{point})$ Donner la condition liant les dérivées temporelles secondes des coordonnées cartésiennes des blocs $\widehat{\ 1}$ et $\widehat{\ 2}$.
4.	$({f 0.5~point})$ Exprimer l'accélération scalaire \ddot{y}_2 du bloc $\textcircled{2}$ en termes de l'accélération angulaire scalaire $\ddot{\psi}$ de la poulie.
5.	(1.0 point) Déterminer l'équation du mouvement du système formé des deux blocs uniquement en termes des grandeurs scalaires $m_1, m_2, g, b, \mu_c, \lambda, M, \dot{y}_2$ et \ddot{y}_2 .
6.	$(\mathbf{0.5\ point})$ Déterminer la vitesse scalaire limite $v_{2,\ell}$ de chute du bloc (2) .
7.	(1.5 point) Déterminer la condition pour que le système formé des deux blocs et de la poulie reste immobile (i.e. en régime statique) en termes des masses m_1 et m_2 des deux blocs.

2. Ressort sur porte tournante (6.5/20 points)

Nom:											1	
Prénom :	Π							\mathbf{N}° Sciper :	Ш			



Un oscillateur harmonique est constitué d'un point matériel P de masse m attaché à l'extrémité d'un ressort de constante élastique k et de longueur à vide ℓ_0 . L'autre extrémité est suspendue à un point fixe A de la charnière d'une porte. L'oscillateur est astreint à se déplacer dans le plan vertical de la porte qui a un mouvement de rotation autour de l'axe vertical Ox_3 avec une vitesse angulaire constante $\Omega = -\Omega \hat{x}_3$ où $\Omega = \text{cste} > 0$. Il n'y a aucune force de frottement à considérer dans ce problème.

On attache un repère sphérique $(P, \hat{r}, \hat{\theta}, \hat{\phi})$ au point matériel P de sorte que les vecteurs de base \hat{r} et $\hat{\theta}$ soient toujours contenus dans le plan vertical de la porte et que le vecteur de base $\hat{\phi}$ soit orthogonal à ce plan et orienté dans le sens des aiguilles d'une montre en vue d'avion.

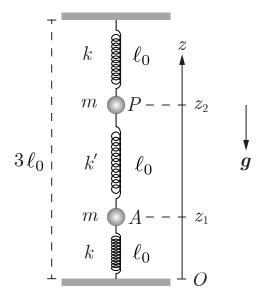
Les réponses doivent être exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées sphériques r, θ et ϕ , de leurs dérivées temporelles, des vecteurs de base \hat{r} , $\hat{\theta}$ et $\hat{\phi}$ du repère sphérique, de la norme du champ gravitationnel g et des grandeurs scalaires spécifiées dans l'énoncé de chaque question.

Questions et réponses au verso!

1.	(1.0 point) Déterminer les vecteurs force centrifuge F_c et force de Coriolis F_C exercés sur le point matériel P dans le référentiel relatif de la porte.
	$oldsymbol{F}_c =$
	$ extbf{\emph{F}}_{C}=$
2.	$(1.5~{f point})$ Déterminer le vecteur force de réaction normale ${m N}$ exercé par la porte sur le point matériel ${\cal P}.$
	$N = \dots$
3.	(1.0 point) Déterminer l'expression de l'énergie mécanique E du point matériel P dans le référentiel absolu du bâtiment en prenant comme référence d'énergie potentielle de pesanteur le haut de la porte qui contient le point A et comme référence d'énergie potentielle élastique l'extrémité du ressort au repos.
	$E = \dots$
4.	(1.0 point) Dans le cas particulier où l'angle d'inclinaison θ de l'oscillateur est maintenu constant, i.e. $\theta = \theta_0 = \text{cste}$, déterminer la condition sur la vitesse angulaire scalaire Ω pour qu'il y ait des oscillations autour d'une coordonnée radiale d'équilibre en utilisant l'équation du mouvement radial, et déterminer alors la coordonnée radiale d'équilibre r_0 .
	$r_0 = \dots$
5.	(1.0 point) Dans le cas particulier où la longueur du ressort est maintenue constante, i.e. $r=\ell=\text{cste},$ déterminer les angles d'équilibre $0\leqslant\theta_1<\theta_2<\pi/2.$
	$\theta_1 = \dots \qquad \qquad \theta_2 = \dots \qquad \qquad$
6.	(1.0 point) Dans le cas particulier de la question précédente, déterminer la pulsation ω des petites oscillations autour de la position d'équilibre θ_2 lorsque $\Omega^2 \geqslant g/\ell$ en utilisant les développement limités au 1 ^{er} ordre en $\alpha = \theta - \theta_2 \ll 1$ autour de θ_2 ,
	$\sin \theta = \sin (\theta_2 + \alpha) \simeq \sin \theta_2 + \cos \theta_2 \alpha$ $\cos \theta = \cos (\theta_2 + \alpha) \simeq \cos \theta_2 - \sin \theta_2 \alpha$
	et en négligeant les termes en α^2 dans l'équation du mouvement. Montrer explicitement par calcul si $\omega > \Omega$ ou $\omega = \Omega$ ou alors $\omega < \Omega$.
	$\omega = \dots$

3. Oscillateurs couplés (7.0/20 points)

Nom:								
Prénom :								ho N° Sciper : $ ho$



Un oscillateur harmonique constitué d'un point matériel P de masse m est suspendu à l'extrémité d'un premier ressort de constante élastique k et de longueur à vide ℓ_0 qui est attaché à un point fixe d'un plafond. Un oscillateur harmonique constitué d'un point matériel A de masse m est suspendu à l'extrémité d'un deuxième ressort de constante élastique k' et de longueur à vide ℓ_0 qui est attaché au point P. Finalement, un troisième ressort de constante élastique k et de longueur à vide ℓ_0 est attaché au point A et fixé à l'origine O au plancher. Les oscillateurs sont astreints à se déplacer selon l'axe vertical Oz dont le vecteur unitaire \hat{z} est orienté vers le haut. Il n'y a aucune force de frottement à considérer dans ce problème.

La coordonnée verticale du point A est z_1 et la coordonnée verticale du point P est z_2 . Ces coordonnées sont définies par rapport à l'origine O. La distance qui sépare le plafond du plancher est $3\ell_0$. La coordonnée verticale du centre de masse Z_G et la coordonnée verticale relative z sont définies comme,

$$Z_G = \frac{1}{2}(z_1 + z_2)$$
 et $z = z_2 - z_1$

Les réponses doivent être exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées verticales z_1 , z_2 , Z_G et z, et de leurs dérivées temporelles, du vecteur de base \hat{z} , de la norme du champ gravitationnel g et des grandeurs scalaires spécifiées dans l'énoncé de chaque question.

Questions et réponses au verso!

1.	(1.5 point) Déterminer le vecteur force élastique $F_{e,1b}$ exercé par le ressort du bas et le vecteur force élastique $F_{e,1c}$ exercé par le ressort du centre sur le point matériel de masse m en A , ainsi que l'équation scalaire du mouvement absolu du point matériel A selon l'axe vertical Oz .
	$oldsymbol{F}_{e,1b} =$
	$ extbf{\emph{F}}_{e,1c} =$
2.	(2.5 points) Déterminer le vecteur force élastique $F_{e,2h}$ exercé par le ressort du haut et le vecteur force élastique $F_{e,2c}$ exercé par le ressort du centre sur le point matériel P . Déterminer aussi la force de translation F_t et l'accélération relative $a_r(P)$ du point matériel P dans le référentiel relatif où le point A est au repos. En déduire l'équation scalaire du mouvement relatif du point matériel P selon l'axe vertical Oz .
	$oldsymbol{F}_{e,2h} =$
	$oldsymbol{F}_{e,2c}=$
	$oldsymbol{F}_t = \dots$
	$a_r(P) = \dots$
3.	$(1.0\ \mathbf{point})$ Déterminer l'équation du mouvement du centre de masse en termes de la coordonnée verticale Z_G et de ses dérivées temporelles, et l'équation du mouvement relatif en termes de la coordonnée verticale z et de ses dérivées temporelles.
4.	(1.0 point) Déterminer les positions d'équilibre $z_{1,0}$ et $z_{2,0}$ des points matériels A et P .
	$z_{1,0} = \dots \qquad z_{2,0} = \dots$
5.	$(1.0\ \mathbf{point})$ Déterminer l'énergie cinétique T et l'énergie potentielle totale V du système constitué des oscillateurs couplés. Prendre comme référence d'énergie potentielle de pesanteur la droite horizontale qui passe par l'origine O et comme référence d'énergie potentielle élastique l'extrémité des ressorts à vide.
	$T = \dots$
	$V = \dots$